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Abstract. Two kinds of coherent states are constructed in the context of Ihe Caloger- 
Sutherlmd singular oscillator. The motion of the peaks of the wavefundions of these coherent 
states s e  compared with the classical uajedory. It is found that while the wavefunnion for 
one kind of coherent states is always singly peaked, that for the other a q u i m  multiple peaks 
close to the classical turning point near the origin. The two coherent sfales me found to exhibit 
a kind of complementarity. 

1. Introduction and summary 

The CalogeroSutherland model [ 1-21 describing a quantum system of N kinematically 
similar particles in one dimension, interacting pairwise via quadratic and centrifugal 
potentials, has attracted considerable interest in recent times. Not only does it provide 
an example of an exactly solvable many-body system, it  has also been found relevant to the 
quantum Hall effect, fractional statistics and anyons [3-5]. For any quantum mechanical 
system, particularly an exactly solvable one, a natural question to ask is the one SchrOdinger 
[6] raised and answered in the context of a harmonic oscillator: Which quantum mechanical 
states have the property that the peak of the modulus square of their wavefunctions follows 
the classical trajectory without changing form? As is well known, this search led to the 
notion of coherent states [7]. The purpose of this work is to examine this question in the 
context of the two-particle Calogero-Sutherland model, a problem, which, after removing the 
centre-of-mass motion, reduces to that of a singular oscillator described by the Hamiltonian 

The eigenvalues and eigenfunctions for this Hamiltonian can be obtained using two methods. 
While the first [8] makes use of the su(1,l) algebra, the second [9-11] is based on 
factorization of a more general ‘Hamiltonian’ which is such that its eigenstates, suitably 
restricted, yield the eigenstates of the problem at hand. Both of these approaches have 
been used for an exact solution of the N-body Calogerdutherland model. We shall first 
briefly review the group theoretic approach and defer the discussion on the second method 
of solution to section 4. 

The Hamiltonian operator 

h2 dZ 1 g2 
H = - - + - m w X  +- 

2mdX2 2 X2 (2) 

5747 0305-4470/95/205747+09519.50 0 1995 IOP Publishing Ud 



5148 

on introducing the dimensionless variables 

G S Aganval and S Chaturvedi 

can be written as 
1 dZ 1 G* x=- - -+ -x  +- 
2dx= 2 x ? '  

Following Perelemov [SI, we define 

where 
1 

a. = - 1 ( x  + g) 4 = (. - i) b o ,  41 = 1. (7) J2 
It can easily be verified that these operators satisfy the su(l.1) algebra 

[Kz, K*] = fK* [ K - ,  K+] 2 K z .  (8) 

From the su(1,l) structure, it follows that H has discrete eigenvalues E.. n = 0, 1,. . . 
given by E, = 2n + Eo and the corresponding eigenstates $,, 

H @ n  = En$" (9) 
are given by 

$?I = K;h 

K-*o = 0 
H*o = Eo$o. 

where $0 satisfies 

The explicit expressions for the normalized eigenfunctions of H are found to be 

where 01 = 4 + $m is the positive root of the equation 01(01- 1) = 2g2. These form 
an orthogonal set in the interval (0, CO). The action of K+ on these states is given by 

K+ *n ( x )  = J(n + I X ~  +a + 1 / ~ ~ + ~ ( ~ )  
K-$"(x) = Jn(n  + a  - I / Z ) $ ~ - ~ ( X ) .  

(14) 

(15) 

2. Coherent states 

There are two kinds of coherent states which can be defined for the singular oscillator under 
consideration. 
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2.1. Eigenstates of K- 

For the ordinary harmonic oscillator, the ground state is uniquely given by the state which 
is annihilated by 5. Coherent states, in  this case, are taken to be the eigenstates of a,,. By 
analogy, for the singular oscillator one may define coherent states as the eigenstates of the 
operator K- 

K-Y t  = AY,. (16) 

q l  = xu exp(-x2/2)@ (17) 

Putting 

equation (16) may be written as 

2 d2 d 
d2x dx 

x -@ + h x - @  - 4AX2@ = 0. 

r 

Rewriting (20) as 
qq (x, A) = N[(A)-("-'/2'/2 e -A  I [ X ' ' ~ ~ ~ ~ - ~ , ~ ) ( ~ ( A X ~ ) ~ / ~ )  exp(-x2/2)] (22) 

and using the fact that the expression in the second set of square brackets can be expanded 
in terms of Laguerre polynomials one obtains the following expansion for Wl(x, A )  in terms 
of the eigenstates of 31: 

The expectation value of 'K in the state Yl(x, A) is found to be 

For large L, using the asymptotic result 

one finds that 

(1-1) E 21Al+ 1/2. (26) 
Further, from the commutation relations between K- and 'K, it follows that if the 

singular oscillator is initially prepared in the coherent state YI(x, Ihle-'@) then the state at 
a later time is q l ( x ,  Ihle-'(e+20f)). 



5750 G S Aganval and S Chatunvdi 

The coherent states discussed above, being eigenstates of K- 5 Kx - iK,, constitute a 
class of minimum uncertainty states appropriate to the SU(I,I) algebra generated by K x ,  K, 
and Kr, i.e. for these sfiltes one has the relation (AK, ) (AK, )  = ( (K, ) [ /2 .  Using (51-47) 
the expressions for K,, K, and K,, in terms of x and p 

Kz = (x2-p2)/4-G2/2x2 K y  = -(xp+px)/2 and K, = ( x 2 + p 2 ) / 4 + G 2 / 2 x z .  

-ia/ax,, are found to be 

2.2. Eigenstate of the canonical conjugate of K, 

In an earlier work 1121, it was shown that, to every coherent state which is an eigenstate 
of an annihilation operator F ,  one can associate a coherent state which is dual to it. The 
construction of the dual coherent states involves the notion of an operator G which is the 
canonical conjugate of Ft, i.e. an operator which satisfies [G, Ft] = 1 on all states in an 
appropriate sector of the Fock space. In the present context, the canonical conjugate K-  of 
K+ is easily found 10 be 

K - [ l / ( K ,  + k ) ] K -  or+ 1/2 =2k (27) 

and one has 

[K, K+] = 1. 

The eigenstates W,(x, j3) of K- 

are easily found to be 

In view of the fact that the canonical conjugate of IC- and K + ,  these states are evidently the 
states obtained by the application of the operator exp(pK+) on the state @&) annihilated 
by IC-. 

(32) 

These states are easily seen to coincide with the coherent states constructed by Perelemov 
181 for the present case though from a different point of view. They can also be regarded 
as the states annihilated by the operator d- where 

W x ,  B )  = (1 - Ij312)'exp(bK+)$dx). 

k- = exp(pK+)K- exp(-@K+) = K- - 2 @ ~ ,  + @'K+ (33) 

or, in view of (28), as the states annihilated by the operator K J ( K ,  + k )  (with k defined 
by (30)). 

[K- - B ( K ,  + UIY2(x. B )  = 0. (34) 

Further, from the commutation relations between IC- and H, it follows that if the singular 
oscillator is initially prepared in the coherent state Oz(x, Ihle-'') then the state at a later 
time is W&, IAle-'(B+bt)). 
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3. Classical behaviour 

If the Hamiltonian given by (1) is considered classically then one finds that the classical 
turning points are located at [ E * ( _.-- E’ 2g2,’”]”’ x=* - 

mo2 m b 4  mo2 

Classical motion is thus possible only when 

E 2 E,I = &go. 

The classical trajectory is given by 

XZ(2) = - 
mo2 

where O ( t )  = 2ot + 8.  

(35) 

(36) 

(37) 

4. Classical trajectories and coherent states 

We first consider the coherent state V&, ,6). The peak of 

is located at 

the expectation value of X in the coherent state Yz(x, 8) is found to be 

Using this relation in the expression for x: to eliminate I@[ in favour of (‘H) one obtains 

The position of the peak changes according to the following equation 

For large 8, Eo Z J2G 2 1/2 yields the classical trajectory. 
For the coherent V , ( x ,  A), it is not possible to give an analytical expression for the 

position of the peak. Figures 1 and 2 show I?vl(x, A)/’ and IV2(~, ,9)1~ for various values 
of ]AI, 8, and 01. For comparison with the coherent states \ Ir2(x,  B )  we have chosen Ih\ so 
that the expectation value of ‘H in the two cases are the same. The arrow on these figures 
indicates the classical position of the oscillator. Some salient features of these plots are as 
follows. 
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(i) At O(0) = 0 the function lYl(x, A)\' is sharply peaked. The function IYz(x, p)I2,  on 
the other hand, is quite broad. As  e ( t )  increases, the width of I?vt(x, A)I2 increases whereas 
that of lYz(x,  ,9)12 decreases. This continues until e(t)  becomes close to n. The function 
p u r ( x ,  A)I2 no longer remains single peaked (figure I@)). In contrast to this, the function 
lY2(x,p)12 continues to have a single peak and the peak is at its sharpest for O(t )  = R. 
The two coherent states thus exhibit a kind of complementarity. 

(ii) For large 8, the peak of IYz(x, ,!?)Iz follows the classical trajectory as is also evident 
from the analytical expression (43) for the position of the peak. The peak of the function 
lY,(x, A)l2, on the other hand, follows the classical trajectory for large (X). (For values of 
e close to R where the function 181 ( x .  A)\' has many peaks, we consider the highest peak 
for the purpose of comparison with the classical trajectory.) 

X X 

% 3  4 5B_ I ,  

2 

I I ,  
Figure 1. l l y ~ ( x , A ) l ~  (full curve) and lW~(x,fl)lz 
(broken c w e )  as a function of x for Pi) = 200.102 
(corresponding to IAI = 100, I@I = 0.951), U = 9.5 

O'O *" ''O '" 2.0 and (a )  8 = 0 (b) 8 = nj2 (c) 8 = 1. NOLe that the 
parameter8 gives the time evolution of ly. 

0 '  

X 

5. Algebraic construction of the coherent states of the Calogero-Sutherland osciUator 

In this section we briefly outline the connection between the coherent states studied above 
and the coherent states that may be defined in the context of the factorization method [9-111 
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Figure 2. l'#vl(x.A)1* (fall curve) and Iu1~(x,@)l2 
(broken curve) as a function of x far (?i) = 4.522 
(corresponding lo IAI = 2, IS1 = 0.69), II = 1 . 1  and 

e = o (b)  e = x i 2  (=) e = Z. 

for solving the CalogereSutherland model. In this method, instead of N given by (4), it 
proves convenient to work with the operator 31' defined as follows 

One then considers a more general operator 

which differs from 31' by an extra term involving the 'parity operator' M satisfying 

The added term has the advantage that the operator H' can now be written as 

where 
H' = $[U-, Q+) (47) 

LY 
a- = + -( 1 - M) (48) 

2/2, 
t "  a+ =U, - -(I - M). ax (49) 
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The operators a- and a+ obey the following commutation relations: 

(50) 
Further, it is evident from (45) that the eigenstatcs of H' satisfying M&(x) = $* (x )  are 
eigenstates & ( x )  of 7-1'. Such states will be hereafter referred to as the states in the even 
sector. Now, by virtue of the commutation relations (50), the eigenstates of H' are given 
by 

$.(x) = U?$O (51) 

G S Aganval and S Chaturvedi 

[a-, ~ + l  = 1 + ~ z M  la, h'] = a la+, h'] = -a +. 

where & satisfies 

Imposing M M x )  = h ( x ) ,  one finds that 

& ( x )  = exp(-x2/2) 

which, after multiplication by x m ,  are easily found to be identical to the eigenfunctions (13) 
obtained using the group theoretic approach. 

It is interesting to note that, in this method of solution, the coherent states 9 1 ( x ,  A) 
discussed earlier corresponds to the eigenstates of a: in the even sector. Likewise the 
coherent states Yz(x, ,!3) correspond to the states annihilated by a- + pa+ in the even 
sector. The two coherent states thus bear the same relationship to each other as do the cat 
and the squeezed states in the context of the ordinary harmonic oscillator. 

6. Conclusions 

Jn this work we have considered two kinds of coherent state for the Caloger&utherland 
singular oscillator with a view to examining the question as to what extent the peaks of 
their wavefunctions follow the classical hajectory. It is found that, while one reproduces the 
classical motion for large values of the parameter g, the other gives a fairly good agreement 
with the classical behaviour for large values of the expectation value ('H) in that state. 
The two coherent states are not only duals of each other in the sense defined in [12] but 
also exhibit a kind of complementarity-in the regions where one coherent state is sharply 
peaked the other exhibits a broad peak and vice versa. Of the two coherent states considered 
one finds that while one is always singly peaked, the other breaks into several peaks close 
to the barrier at the origin. The relationship of these coherent states to those that can be 
constructed in the context of the algebraic method of solution of the CalogerGhtherland 
oscillator is also brought out. Once the algebraic smcture is clear one can conshuct other 
types of state as well, for example, the ones associated with linear combinations [13] of a! 
and U: which would belong to the general class of minimum uncertainty states associated 
with the singular oscillator. 
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